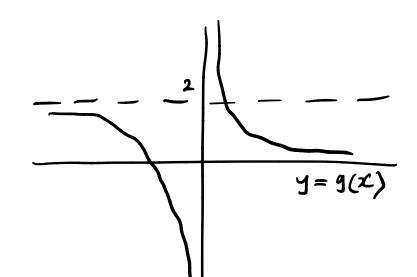

Define a function

$$g(x) = \frac{1}{x}$$
 when $x>0$

$$g(x) = \frac{1}{x} + 2$$
 when $x < 0$

Compute 9(x). Explain.


Define a function

$$g(x)$$
 by

$$g(x) = \frac{1}{x}$$
 when $x>0$

$$g(x) = \frac{1}{x} + 2$$
 when $x < 0$

Compute 9(x). Explain.

$$g(x) = -\frac{1}{x^2}$$
 when $x>0$

$$g'(x) = -\frac{1}{x^2}$$
 when $\chi(0)$

Explanation:

Although we know that the antiderivative of $g'(x) = -\frac{1}{x^2}$

is equal to $g(x) = \frac{1}{x}$ by the

Mean Value Theorem, the MVT

assumes that the function g(n)

is continuous and differentiable within

that interval.

If the function has a discontinuity, the result of the theorem:

9/8/25

y=9(x)

g'(x) = G(x) + Cdoes not have to be true.